Types of Triangles - Classify by SIDES

Circle the correct name(s) of the triangle below:

SCALENE A

How many \cong sides does a scalene \triangle have? $\bigcirc \bigcirc \bigcirc \bigcirc$

Mark the sides of the triangle To show that NONE are the same ->

EQUILATERAL A

How many \cong sides **must** an equilateral \triangle have?

Can it have more than that amount?

Can it have less than that amount?

Mark the \cong sides in the triangle \rightarrow

ISOSCELES A

How many \cong sides **must** an isosceles \triangle have?

Can it have more than that amount?

Can it have less than that amount?

Mark the \cong sides in the triangle \rightarrow

Types of Triangles - Classify by ANGLES

Cirice the RIGHT Δ (there may be more than one)

Cirice the ACUTE Δ (there may be more than one)

Cirice the OBTUSE Δ (there may be more than one)

EQUIANGULAR A

Cirice the EQUIANGULAR A (there may be more than one)

PRACTICE PROBLEMS (All answers are on the bottom of page 23)

CLASSIFYING TRIANGLES -

Use the definitions and pictures on page 20 to classify the triangles by their SIDES and ANGLES.

2

3.

7x + 3x - 10 = 90 or 7x + 3x - 10 + 90 = 180x = 10

$$50+x=2x+8$$

 $50=x+8$
 $x=42$

5.

$$3x-1+87=7x+2$$

 $x=21$

6.

60+2×+2=5×+2 ×=20 7.

x-13+90 = 3x+7x=35